Pre-Conceptual Design of the Fuel and Materials Test Station at LANSCE Eric Pitcher Los Alamos National Laboratory AFCI Quarterly Review January 23, 2003 #### FMTS to be located at LANSCE Area A #### Features of the Fuels and Materials Test Station (FMTS) - Provide an irradiation environment for the testing of advanced nuclear fuels and structural materials. - Provide a flexible facility with closed test loops that can use a variety of coolants (e.g., water, sodium, LBE). - Use the underutilized LANSCE proton beam, second only to PSI's SINQ in power, to produce high neutron fluxes over small irradiation volumes. - Use existing infrastructure to keep costs low. #### FMTS proposed location is the A-1 target # The A-1 location has room for a 13-foot-diameter vessel to contain the FMTS target ### The FMTS target will be serviced from above using an existing 30-ton crane # The target and irradiation tubes are attached to a 5-m-high stalk # The pulsed nature of the LANSCE proton beam allows the use of a split spallation target 1-ms-long pulses are delivered at 120 Hz repetition rate The beam spot is alternated between two positions on the target # The split target produces a higher, more uniform neutron flux in the central fuel region # Below 20 MeV, the FMTS spectrum compares favorably with a typical fast reactor spectrum - Fast reactor spectrum normalized to a fast flux of 1×10¹⁵ n/cm²/s - Central fuel region of FMTS, LBE-cooled U target - ATR with FNFB normalized to a fast flux of 8.5×10¹⁴ n/cm²/s * Source: A FAST NEUTRON FLUX BOOSTER TEST-FACILITY IN THE ATR FOR ADVANCED NUCLEAR FUEL AND MATERIAL TESTING ### The FMTS can provide a unique radiation environment for fuels and materials irradiations - Pre-conceptual design shows that intense neutron flux is possible over a small volume. - Wide mix of proton and neutron fluxes are produced. - Safety assessment and authorization plan completed. Planned experiments are within the existing EIS. - There are no criticality safety concerns. - Closed loops provide a safe testing environment in various coolants. - Facility can be built in 3 years for \$20M. #### backup slides #### The neutron flux is fairly uniform over a 10-cm height #### Performance Parameters for the LBE-cooled U Target | Position | Peak Neutron Flux (n/cm²/s/mA) | Total High-E
(>20 MeV)
Neutron Flux
(n/cm²/s/mA) | Total Proton Flux (p/cm²/s/mA) | Peak He
Prodution
Rate
(appm/y/mA) | Peak Atomic
Displacement
Rate
(dpa/y/mA) | He/dpa
Ratio
(appm/dpa) | |---------------------------------|--------------------------------|---|--------------------------------|---|---|-------------------------------| | Center fuel zone | | | | | | | | – upstream pin | 7.70×10^{14} | 2.26×10^{13} | 3.79×10^{12} | 2.49 | 6.06 | 0.41 | | peak flux pin | 1.00×10^{15} | 2.77×10^{13} | 4.84×10^{12} | 3.71 | 7.34 | 0.51 | | 'arget window | 8.20×10^{14} | 3.04×10^{13} | 4.30×10^{14} | 591.85 | 43.61 | 13.57 | | n-beam materials ample position | 4.48×10 ¹⁴ | 1.36×10^{13} | 4.60×10^{14} | 514.50 | 30.22 | 16.99 |